Search results for " Ophiolites"
showing 2 items of 2 documents
Caribbean Plate margin evolution: constraints and current problems
2021
Oceanic crust was generated at multiple spreading centres during the Jurassic and Early Cretaceous, forming a "proto-Caribbean" oceanic domain. During the Cretaceous, part of that crustal domain thickened into an oceanic plateau, of petrologic Mid-Ocean Ridge (MOR) to Ocean Island Basalt (OIB) affinity. Simultaneously, the South and North American continental plates developed rifting and tholeiitic magmatism in the Middle America region (Venezuela and Cuba). The rifting created space for the proto-Caribbean oceanic domain. Petrological and regional correlations suggest that, beginning in the Cretaceous, the proto-Caribbean domain was involved into two main stages of subduction, referred to …
Tethyan vs. Cordilleran ophiolites: a reappraisal of distintctive tectono-magmatic features of supra-subduction complexes in relation to the subducti…
2004
Abstract Supra-subduction zone (SSZ) ophiolites deserve special attention because they represent fundamental markers of intraoceanic convergence and generation of new lithosphere above subduction zones. Moreover, owing to their structural characteristics and location in the overriding plate, these complexes are far better represented and preserved than Mid-Ocean-Ridge-Basalt (MORB) ophiolites in orogenic belts. In terms of their structure, tectonics, and magmatic features, SSZ ophiolites may be classified in two main types: (1) “Tethyan complexes” (such as those of the Albanide-Hellenide belt), which mostly consist of complete and extensive volcanic, dyke, plutonic, and mantle sections with…